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where F) = area of waveguide 1 (see Fig. 1(b)). The vectors é
denote
‘—';I(tlp?I = éz X nyTh(};)l (AS)
ég}: =Vx Tep/ (A6)
e =8 x v, T (A7)
2 = 2)
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Analysis of Finline with Finite
Maetallization Thickness

TOSHIHIDE KITAZAWA AND RAJ MITTRA, FELLOW, IEEE

Abstract —In this paper, we present a method for analyzing finline
structures with finite metallization thickness. The method is based on a
hybrid mode formulation but it by-passes the lengthy process of formulat-
ing the determinantal equation for the unknown propagation constant.
Some numerical results are presented to show the effect of the metalliza-
tion thickness for unilateral and bilateral finlines.
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I. INTRODUCTION

Finline structures have received considerable attention because
of their usefulness as millimeter-wave integrated-circuit compo-
nents. Recently, two efficient numerical methods for analyzing
the propagation characteristics of finline structures were pre-
sented. The first of these employs the spectral-domain technique
[1], [2], whereas the second utilizes network analytical methods
for electromagnetic fields [3]. Both of these methods are based on
the hybrid mode formulation, but they neglect the effect of the
metallization thickness, which increases with higher operating
frequencies and narrower gaps in the metallization. An eigen-
value equation for a unilateral finline with a finite metallization
thickness has been previously derived [4] using the hybrid mode
formulation, but only approximate results based on the TE-
approximation have been presented in the above paper. In this
paper, we discuss an efficient hybrid mode formulation for the
finite metallization problem and derive the solution to the prob-
lem without resorting to the TE-approximation. Although the
method is an extension of the treatment in [3], [5], and [6], it
derives Green’s functions using the conventional circuit theory
rather than by directly solving the differential equations with
boundary conditions.

II. THE NETWORK FORMULATION OF THE PROBLEM

The unilateral finline shown in Fig. 1 is used to illustrate the
formulation procedure, but the method itself is quite general.

As a first step, we express the transverse (to z) fields in each
region by the following spectral representation:

E,(’)(x,y,z) } _ i { (1) z)f,’)(x)
4

H(x,y,z) D(2) g (x)

e~ /Boy
3

I M8

=1n

i=1,2,3,4 (1)

where the vector mode functions £ and g{? in each region are
given as
A) region (1), (3), and (4)

1

5=\ 2 (Fomacos(eu) = o sin( )
‘(;‘)=L I { XoJBo cos(ayx) — ppaqsin(a,x)}
n K,V 24
B =2x7P  (I1=12)

nw
(XA=7,KA= o + B§
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- -1 M — T 1
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(2) -

‘/ — {X0jBycos(ay,x) ~ Yooy, sin( o, x) )
=yaj, +B;  (3)

where B, is the propagation constant, and X, ¥,, and Z, are the
x-, y-, and z-directed unit vectors, respectively. It should be
noted that the vector mode functions f{',g{) satisfy the

(1=1,2)7 aW=—n_7£ KW

F(2)
X f Ly
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Fig. 1. Unilateral finline.
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Fig. 2.  Equivalent circuits for transverse section of finline.

boundary conditions at x =+ W and + A4 and the orthonormal
properties.

Substituting (1) into Maxwell’s field equations, we obtain the
differential equations for the modal voltages and currents

d
VD = jr@ePIS)
T dz

d iy (Do
= 1= OO @

where

kD = [2ePp, — KO?

) G(i) _ €€ (region (3)) K(,‘) = KW (region (2))

¢, (otherwise) K, (otherwise)
=t g O
wed D

no 1
y()——(’; (1=1,2).

©)

/

Equivalent circuits in the z-direction can be derived by consid-
ering the differential equations (4) together with the associated
boundary conditions (Fig. 2)." The equivalent voltage sources
¥;4%, 9% shown in this figure are given by

e
L -w\ fP(x)

2\ w (RO L
| 1/;”“} —f_w{ﬁ(’?)* JC/)}-eb(x)abc ;

and where &, and g, are the transverse electric fields at z = t and

(62)

(6b)
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Fig. 3. Bilateral finline (metallization thickness is neglected in this figure).
z = 0, respectively
éa =X eax + yoéay
b b b

(7

The modal voltages ¥\ and currents I in each region can
be obtained by using conventional circuit theory. Flectromagnetic
fields in each region can then be derived by substituting V" and
I{) into (1). Finally, the application of the continuities of mag-
netic fields results in the following set of equations for the
unknown electric fields Z,and ¢, at z=1¢ and z = 0, and for the
unknown propagation constant f8,:

Z z j YO (¢ +016) B0 (x)J(x')-2,(x) d’

EE [ (5000 8 () 1) -2u(x)
+¥O(:-00) g (x) [P ()-2(x)} &' (8a)
1};1”; R C DT OV ACHRNCY
+TO(+010) 32 (x) (%) 2, (x) ) dx
-y ¥ " Y00 () () 2 (x) dx’ (8)

I=1n=0

where Y{(z|z’) are the Green’s functions which relate the modal

currents I{(z) to the voltage source in each of the three regions.
The set of equations (8) is rigorous. Numerical solution of the
equat1ons is discussed in the next section.

The equivalent circuit concept, which is used to derive the
Green’s functions, is similar to that introduced in [2], but is
extended here to treat the geometry with a finite metallization
thickness. We remark here that the method itself is quite general
and can be applied equally well to other finline structures. For
example, Fig. 3(b) shows the equivalent circuits for the bilateral
finline whose geometry is given in Fig. 3(a).

III.  NuMERICAL COMPUTATIONS

" The numerical procedure for solving (8) is analogous to that
used in [3], [5], and [6]; therefore, only a summary of ‘the steps
will be given below.
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Fig. 4. The comparison of this method with other method (the unilateral
finline with zero metallization thickness).
The first step is to expand the unknown electric fields &, and 14 " ™ " - " : T
g, at z=t and O, in terms of an appropriate set of basis
2N, g4
exa(x) xk
= Z b. ka(x)
exb( x) k=1 xk \\ this theory
13) 1
\\ ———— Beyer[‘]

eya(x)}=j2§y{‘;j:}fyk(x) 9

eyb(x) k=1

where axk and bxk are the unknown coefficients. The second

y y £ Ll )
step is to apply the Galerkin’s procedure to (8), which results in o 12
the determinantal equation for the propagation constant B,.
Finally, the determinantal equation is solved for 8 in the finline
structure. Accurate solutions can be obtained with only a small - 75 (o)
number of basis functions, if these functions incorporate the edge ik A=07745 (mm
effect. The following basis functions were used for the numerical d, = 15595 (mm)
: H . d, = 005 (mm) —_
I‘CSllltS presented m thlS paper. dz = 14895 (mm) Partally drelectric-filled waveguide
fxl(x)=1, &=30
X . . . . . . .
Tk_Z(V—V) o 0z 04 06 08 ) 12 1.4 2w=24A
f;ck(x)= ) 3 k=2’3y"' 2W {mm)
‘/1_( x ) Fig. 5. Slot width dependence of the effective permittivity for unilateral
w finline.
X
H(x) =0, W) k=1,2,3,--- (10)

where T, (y) and U, (y) are the Chebyshev’s polynomials of the
first and second kind, respectively.

Preliminary computations show that N, =N,=2 in (9) is
sufficient for deriving accurate results for finite metallization
thickness, just as in the case of zero metallization thickness [3].

The numerical results obtained by this method are plotted in
Fig. 4 together with the published data [4] for the unilateral
finline with zero metallization thickness (¢ = 0) and close agree-
ment between the two sets of results is seen for a wide range of
slot widths. The effective dielectric constant and the characteris-
tic impedance Z; are defined as

(.30/"-’\/50#0 )2
I/OZ
2P

av

Zy=

(11)

where ¥, is the voltage between the fins and P,
power flow along the y-direction.

Fig. 5 shows the slot-width dependence of the effective permit-
tivity €., for the unilateral finline with a finite metallization
thickness (¢ =70 pm). The effective permittivity €. is defined

by [4]
A2
)\g=7\o{€eff—(f) } (12)
where A

g is the wavelength in finline, A, is the free-space
wavelength, and A, is the cutoff wavelength of a ridged wave-
guide of identical dimensions. The values for the case with zero
metallization thickness (7 = 0) are presented for comparison. It is
seen that the effect of the metallization thickness becomes smaller
as the slot width becomes larger. We also note that the results for
the limiting case of W= A converge to those for the partially

is the average

v

~1/2
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Fig. 7. Propagation characteristics of bilateral finline.

filled dielectric waveguide both for the finite and zero thickness
of the metallization. However, when our results are compared
with the published data by Beyer [4], some discrepancies are
noted. The values obtained by Beyer are larger than those for the
case of infinitely thin metallization (+=0), and they do not
appear to converge to a correct limiting value as W approaches
A, as they should.

Fig. 6 shows the frequency dependence of the effect of the
metallization thickness on the effective dielectric constant, and
on the characteristic impedance in a unilateral finline. The finite
thickness reduces the propagation constant in the higher frequency
range as it does in the open slot line [5], because in these
frequency ranges the fields are concentrated near the gap in the
finline and it acts similar to an open slot line. In contrast, a
finline behaves as a ridged waveguide near the cutoff frequency,
and consequently, the thicker its diaphragm, the lower its cutoff
frequency [7].

1487

Fig. 7 shows the effect of the metallization thickness of a
bilateral finline. The results for the limiting case of =0, i.e.,
zero metallization thickness, are compared with those published
by Schmidt and Itoh [1], and the agreement is quite good.

IV. CoONCLUSIONS

In this paper, the hybrid mode formulation was used to analyze
finline structures with finite metallization thicknesses. This for-
mulation used in conjunction with the equivalent circuit analysis
is considerably simpler than the conventional Green’s function
approach. This method itself is quite general and can be applied
to different types of finline structures by a simple modification of
equivalent circuits which can be obtained easily.

Numerical results are presented to show the effects of finite
metallization thickness on the propagation characteristics of
unilateral and bilateral finline structures.
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An Evanescent Mode Waveguide Bandpass Filter at
0 Band

N. P. AKERS anp P. D. ALLAN

Abstract -—Evanescent-mode filters have previously been restricted in
frequency to X band or below. Here, the performance of an evanescent-
mode waveguide bandpass filter with a center frequency in the 26-40-GHz
band (Q band) is reported.

I. INTRODUCTION

The design principles of evanescent-mode waveguide filters
have been developed over a number of years by Craven, Mok,
[1]1-[3] and others [4], {5]. Initially, those principles were based on
image parameter theory but a more refined technique was later
developed which employed equivalent circuits to accurately rep-
resent the below-cutoff guide and its obstacles.
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