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where FI = area of waveguide 1 (see Fig. l(b)). The vectors Z
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Analysis of Finline with Finite

Metallization Thickness
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Abstract — In this paper, we present a method for analyzing finline

structures with finite metaflization thickness. The method is based on a

hybrid mode forsmdation but it by-passes the lengthy process of forsnolat-

irrg the determinantaf equation for the unknown propagation constant.

Some numericaf results are presented to show the effect of the metaUiza-

tion thickness for unilateral and bilateraf finlines.
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I. INTRODUCTION

Finline structures have received considerable attention because

of their usefulness as millimeter-wave integrated-circuit compo-

nents. Recently, two efficient numerical methods for analyzing

the propagation characteristics of finline strictures were pre-

sented. The first of these employs the spectral-domain technique

[1], [2], whereas the second utilizes network analytical methods

for electromagnetic fields [3]. Both of these methods are based on

the hybrid mode formulation, but they neglect the effect of the

metallization thickness, which increases with higher operating

frequencies and narrower gaps in the metallization. An eigen-

value equation for a unilateral finline with a finite metallization

thickness has been previously derived [4] using the hybrid mode

formulation, but only approximate results based on the TE-

approximation have been presented in the above paper. In this

paper, we discuss an efficient hybrid mode formulation for the

finite metallization problem and derive the solution to the prob-

lem without resorting to the TE-approximation. Although the

method is an extension of the treatment in [3], [5], and [6], it

derives Green’s functions using the conventional circuit theory

rather than by directly solving the differential equations with

boundmy conditions.

II. Tm NETWORK FORMULATION OF THE PROBLEM

The unilateral firdine shown in Fig. 1 is used to illustrate the

formulation procedure, but the method itself is quite general.

As a first step, we express the transverse (to z) fields in each

region by the following spectral representation:

z=1,2,3,4 (1)

‘(’) ~d ~};) in each region arewhere the vector mode functions ~1~

given as

A) region (l), (3), and (4)

j{;) = $
r

A { XOa~ cos(ss~x)-JOj/30 sin(a~x)}
A

f-{
~j;) . + % 2oj~Oc0s(a~x) –joa~sin(aAx)}

A

g};) = ~. x J$) (1=1,2)

a.=~,K~={m

{

l(rr=o)

‘n= 2(n #o)”

B) retion (2)

(2)

ff:) = $ F~ * { ioawcos(awx)-JO j/30 sin(awx)}

ff) = +
~{ L ZOj~ocos(awx) –j@wsin(awx)}

~ 2W

~}:)=zoxj:) (/=1,2), Lvw=; , Kw=(a (3)

where & is the propagation constant, and iO, JO, and 20 are the

.x-, y-, and z-directed unit vectors, respectively. It should be

‘(’ ) ‘(’j satisfy thenoted that the vector mode functions ~l. , gl.
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Fig. 1. Unilateral firdine.
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Fig. 2. Equivalent circuits for transverse section of finfine

boundary conditions at x = + W and & A and the orthonormal

properties.

Substituting (1) into Maxwell’s field equations, we obtain the

differential equations for the modal voltages and currents

~(i)”@%=@

(C,60 (region (3))
((0 =

CO (otherwise) {

K(O = ‘w (region (2))
K. (otherwise)

(i) _ Ji)xl —— (i) = %Z*
“C(O ‘ @

~fo = ._!_
zjO

(1=1,2). (5)

Equivalent circuits in the z-direction can be derived by consid-

ering the differential equations (4) together with the associated

boundary conditions (Fig. 2). The equivalent voltage sources

~“ *, fib + shown in this figure are given by

;:]=,:w{~;;}.za(x)dx (6a)

(6b)

and where 2. and z~ are the transverse electric fields at z = tand

SHORT CIRCUIT

(b)

1485

Fig. 3. Bilateral finline (metallization thickness is neglected in this figtrre).

z = O, respectively

2= = XOeax + j$eaY. (7)

b b b

The modal voltages fi$) and currents I};) in each region <m

be obtained by using conventional circuit theory. Electromagnetic

fields in each region can then be derived by substituting ~~) and

1/~) into (l). Finally, the application of the continuities of mag-

netic fields results in the following set of equations for the

unknown electric fields Z. and ?b at z = t and z = O, and for the

unknown propagation constant /30:

f ~ /w~(’)(t+olt)~j:)(x)j:)”(x’).~a(x’) dx’
I=ln=o –w

= ,i’l&J--:w{T(2)(t -w) m( X)fii’)”(x’) z.(i)

+ ~(’)(i –010) @:)(X)j\2)*(X’) ‘~b(X’) } dx’ (8a)

,:, ~:oJ_:{V’)(+ol’)~}:)(~)f};)”( x’)”za(x’)

+~(2)(+010) ~#(x)j/$2)*(x’).Zb(x’)}dx’

= ,ili. /_wwy(3)(-W) d:)(x)j/f:)*(x’)“Eb(x’)dx’ (8b)

where ~(i) (z Iz‘) are the Green’s functions which relate the modal

currents lji) ( z ) to the voltage source in each of the three regions.

The set of equations (8) is rigorous. Numerical solution of the

equations is discussed in the next section.

The equivalent circuit concept, which is used to derive the

Green’s functions, is similar to that introduced in [2], but is

extended here to treat the geometry with a finite metallization

thickness. We remark here that the method itself is quite geneml

and can be applied equally well to other finline structures. For

example, Fig. 3(b) shows the equivalent circuits for the bilateral

finline whose geometry is given in Fig. 3(a).

III. NUMERICAL COMPUTATIONS

The numerical procedure for solving (8) is analogous to that

used in [3], [5], and [6]; therefore, only a summary of the steps

will be given below.
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Fig. 4. The comparison of this method with other method (the milateral
finline with zero metallization thickness).

The first step istoexpand theunknown electric fields E. and

.z~ at z=t and O, in terms of an appropriate set of basis

(9)

where ax, and bx, are the unknown coefficients. The second
Y Y

step is to apply the Galerkin’s procedure to (8), which results in

the determinantal equation for the propagation constant /$.

Finally, thedeterminantal equation issolvedfor~O inthe finline

structure. Accurate solutions can be obtained with only a small

number of basis functions, if these functions incorporate the edge

effect. The following basis functions were used for the numerical

results presented in this paper:

fx,(’) =1,

()

‘Xk(x)”ti

k=2,3,.. .

x“

w

()fyk(’)=uk ; , k=l,2,3,... (lo)

where T,(y) and U~ (y) are the Chebyshev’s polynomials of the

first and second kind, respectively.

Prelirninmy computations show that NX = NY = 2 in (9) is

sufficient for deriving accurate results for finite metallization

thickness, just as in the case of zero metallization thickness [3].

The numerical results obtained by this method are plotted in

Fig. 4 together with the published data [4] for the unilateral

finline with zero metallization thickness (t= O) and close agree-

ment between the two sets of results is seen for a wide range of

slot widths. The effective dielectric constant and the characteris-

tic impedance 20 are defined as

(1%/@XJ2

v:

‘o= 2Pan
(11)
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Fig. 5. Slot width dependence of the effective pernrittivity for unilateral

where V. is the voltage between the fins and P=u is the average

power flow along the y-direction.

Fig. 5 shows the slot-width dependence of the effective permit-

tivity E,ff for the unilateral finline with a finite metallization

thickness (t= 70 pm). The effective permittivity C=ff is defined

by [4]

f /. , 2) – 1/2

“=AO{ceff-Kw (12)

where Ig is the wavelength in finline, A o is the free-space

wavelength, and A ~ is the cutoff wavelength of a ridged wave-

guide of identical dimensions. The values for the case with zero

metallization thickness (t = O) are presented for comparison. It is

seen that the effect of the metallization thickness becomes smaller

as the slot width becomes larger. We also note that the results for

the limiting case of W= A converge to those for the partially
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Fig. 7. Propagation chsmcteristics of bilateral finline.

filled dielectric waveguide both for the finite and zero thickness

of the metallization. However, when our results are compared

with the published data by Beyer [4], some discrepancies are

noted. The values obtained by Beyer are larger than those for the

case of infinitely thin metallization (t = O), and they do not

appear to converge to a correct limiting value ‘as W approaches

A, as they should.

Fig. 6 shows the frequency dependence of the effect of the

metallization thickness on the effective dielectric constant, and

on the characteristic impedance in a unilateral finline. The finite

thickness reduces the propagation constant in the higher frequency

range as it does in the open slot line [5], because in these

frequency ranges the fields are concentrated near the gap in the

finline and it acts similar to an open slot line. In contrast, a

finline behaves as a ridged waveguide near the cutoff frequency,

and consequently, the thicker its diaphragm, the lower its cutoff

frequency [7].

Fig. 7 shows the effect of the metallization thickness of a

bilateral finline. The results for the limiting case of t = O, i.e.,

zero metallization thickness, are compared with those published

by Schmidt and Itoh [1], and the agreement is quite good.

IV. CONCLUSIONS

In this paper, the hybrid mode formulation was used to analyze

finline structures with finite metallization thicknesses. This for-

mulation used in conjunction with the equivalent circuit analysis

is considerably simpler than the conventional Green’s function

approach. This method itself is quite general and can be applied

to different types of finline structures by a simple modification of

equivalent circuits which can be obtained easily.

Numerical results are presented to show the effects of finite

metallization thickness on the propagation characteristics of

unilateral and bilateral fit-dine structures.
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An Evanescent Mode Waveguide Bandpass Filter at

Q Band

N. P. AKERS AND P. D. ALLAN

Abstract —Evanescent-mode filters have previously been restricted in

frequency to X band or below. Here, the performance of an evanescent-

mode wavegnide bandpass filter with a center frequency in the 26-40-GIHz

band (Q band) is reported.

I. INTRODUCTION

The design principles of evanescent-mode waveguide filters

have been developed over a number of years by Craven, Mok,

[1]-[3] and others [4], [5]. Initially, those principles were based cm

image parameter theory but a more refined technique was later

developed which employed equivalent circuits to accurately rep-

resent the below-cutoff guide and its obstacles.

Manuscript received November 2, 1983; revised May 31, 1984.
N. P. Akers was with M. S.D. S., Ltd., Frimley, Surrey, U.K. He is now with

the Department of Electrical and Electronic Engineering. Portsmouth Polytech.
oic, Portsmouth, Hampshire, U.K.

P. D Alkm IS With M. S.D.S Ltd.. Grirnle>. Surrey. U.K.

0018-9480/84/1100-1487 $01.00 ~1984 IEEE


